If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+34x+37=0
a = 4; b = 34; c = +37;
Δ = b2-4ac
Δ = 342-4·4·37
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{141}}{2*4}=\frac{-34-2\sqrt{141}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{141}}{2*4}=\frac{-34+2\sqrt{141}}{8} $
| (x/2+1+3x/4)=-9 | | 5x/8x=180 | | 11-17c+4=15-17c | | (8z^2+4z)/2z=0 | | x+4=4x+11=180 | | B=5/4(j-63) | | 2(u+5)=4u-8 | | 12z-2(14z+3)=-16z | | 100-r=80 | | (8z^2+4z)/2=0 | | 50*x=90 | | 2+19j=20j-18+j | | 20x+1=59 | | -12+12p=10p+2p-10 | | -8-3=a | | -15v=5(-3v-4) | | x+2x+x/12=180 | | 3×+15=3+5x-8 | | 6(-5-x)=8(-x+13) | | 40x-30=55x | | 18-20k=-3k-20k-12 | | 5x+34=75 | | 7x+8x-9x-5=13 | | -4s+14=-4s-18-12 | | (5x-4)=(4x+4) | | -4s+14=—4s-18-12 | | 11/6=n+7/9 | | 16x^2+44x+73=0 | | (y/3)^2=100 | | -7q-10q+12=-17q+12 | | -7q-10q+12=17q+12 | | 16=3v-14 |